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Abstract

The main objective of this study is to construct new nonlinear eddy diffusivity models reflecting buoyant effects in wall-bounded tur-
bulent shear flows and heat transfer. It is now well known that the turbulent heat-fluxes, which are the key quantities for the prediction of
turbulent flows with buoyancy, are not modeled accurately by employing the conventional turbulence models using eddy diffusivities. In
order to appropriately predict wall-bounded turbulent flows with buoyancy, an innovative turbulence heat-transfer model with eddy dif-
fusivities which are composed of the k—¢ two-equation model for velocity field and the ky—¢y two-equation model for thermal field, must
be constructed. Consequently, we should improve the modeled expressions for Reynolds stresses and turbulent heat-fluxes reflecting the
buoyant effect in wall-bounded turbulent shear flows. The existing two-equation turbulence models were evaluated on the basis of the
DNS data of channel flows with buoyancy. Using the results of evaluation, we constructed new modeled expressions for Reynolds stres-
ses and turbulent heat-fluxes in explicit algebraic models, and reconstructed the nonlinear two-equation turbulence models for the buoy-
ancy-affected wall-shear flows and heat transfer, including the newly proposed nonlinear eddy diffusivity for a momentum model
(NLEDM) and the nonlinear eddy diffusivity for heat model (NLEDHM). The proposed nonlinear two-equation turbulence models

reflecting buoyancy effect appropriately predict wall-bounded turbulent shear flows with buoyancy given by DNS.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The main objective of this study is to construct nonlin-
ear two-equation turbulence models reflecting the buoyant
effect in wall-bounded turbulent shear flows and heat trans-
fer. Wall-bounded turbulent shear flows with buoyancy
have been encountered in many engineering-relevant appli-
cations such as a flow in a computer or room. Two-equa-
tion turbulence heat-transfer models for analysis of
forced convection have been developed to accurately calcu-
late forced convective turbulence flows (e.g., Nagano and
Hattori, 2003; Hattori and Nagano, 1998; Abe et al.,
1996; Nagano and Shimada, 1996). Since the buoyancy
effect is hard to reflect properly in the modeled expressions
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of Reynolds shear stress and turbulent heat-flux using the
linear eddy diffusivities, two-equation turbulence heat-
transfer models might not be adequate for an analysis of
turbulent shear flow with buoyancy. For example,
although the transport equations for Reynolds shear stress
and turbulent heat-flux have a buoyant term, respectively,
reflecting adequately this term in relevant eddy diffusivities
might be difficult. On the other hand, in order to predict
adequately wall-bounded turbulent flow with buoyancy, a
conventional two-equation heat-transfer models might
not be appropriate, because the streamwise turbulent
heat-flux needed to predict the flow cannot be calculated
by the model for the model definition. Murakami et al.
(1996) proposed linear eddy diffusivity models (EDMs)
for buoyancy-affected flow. Here, the buoyant effect is
included in the buoyant-reflected model function. How-
ever, this function has to be conditionally applied in the
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Nomenclature

Ar Archimedes number, gBAOLy/ U,

by anisotropy tensor, w;u;/2k — 0;;/3
cp specific heat at constant pressure
Co model constant

Cp, C, constants in nonlinear model

Cp1, Cps, Cpy, Cpy, Cp3 constants in transport equation
for gy

C;, C,, constants in eddy diffusivity for heat

C, constant in eddy viscosity

C.1, Cyp, Cy3 constants in transport equation for ¢

I3 function to guarantee realizability of anisotropy
tensor

fp1, fp2s fp1, [P, fp3 functions in transport equation for
&g

IR function of time-scale ratio

fw(&)  wall-reflection function

fe low-Reynolds-number model function in trans-
port equation for ¢

fa low-Reynolds-number model function in eddy
diffusivity for heat

Ju low-Reynolds-number model function in eddy
viscosity

k turbulence energy, uu;/2

ko temperature variance, 0°/2

g gravitational acceleration

Gr Grashhof number, gfAO(25)*/v*

n local coordinate normal to wall surface

n* nondimensional distance between point and
nearest point on whole surface, un/v

P mean static pressure

Pr Prandtl number, v/«

R time-scale ratio, t4/t,

Rey, Reynolds number based on bulk velocity,
2Ub(3/v

Re, Reynolds number based on friction velocity,
u /v

R, turbulent Reynolds number, k*/ve

Sy strain-tensor, (0U;/0x; + 0U,;/dx;)/2

t, friction temperature, gw/(pci,)

U,V,W mean velocity in x-, y- and z-directions, respec-
tively

u,v,w  turbulent fluctuation in x-, y- and z-directions,
respectively

Uy bulk velocity

U

i mean velocity in x-direction

U; turbulent fluctuation in x;-direction

U, friction velocity, \/Tw/p

u, Kolmogorov velocity scale, (vs)l/ 4

X; Cartesian coordinate in i-direction

x, y, z Cartesian coordinate in streamwise, wall-normal
and spanwise directions, respectively

yh nondimensional distance from wall surface,

uylv

Greek symbols

o, o,  molecular diffusivity and eddy diffusivity for
heat

ocﬁi anisotropy eddy diffusivity for heat

b coefficient of volume expansion

0 half-width of channel

0y Kronecker delta

AO temperature difference between local and refer-
ence points, @, — O,

€ dissipation rate of turbulence energy,
v(@ui/éxj) (6ui/6xj)

€0 dissipation rate of temperature variance,
#(00/0x,)(00/0x,)

v, v, kinematic viscosity and eddy diffusivity for
momentum

p density

Q; vorticity tensor, (dU;/dx; — 0U;/dx;)/2

T characteristic time-scale of turbulence

T hybrid/mixed time-scale

Tg time-scale of temperature field, ko/eg

Ty time-scale of velocity field, k/e

Ty wall-shear stress

2] mean temperature

0 temperature fluctuation

) ensemble- or time-averaged value
)t normalization by inner variables (u,t.,v)
/Dt substantial derivative, 0/0t + U;0/0x;

specific Reynolds shear stresses and turbulent heat-fluxes,
i.e., the model function depends on components of turbu-
lent stresses and turbulent heat-fluxes. Also, the improve-
ment of a prediction for a streamwise turbulent heat-flux
was not modeled in particular. It is well known, however,
that only linear eddy diffusivity models were successful in
predicting the turbulent heat-flux in a turbulent natural
convection flow along a vertical plate (Yin et al., 1991;
hereinafter referred to as the YNT model). The same inves-
tigators adopted the empirical equation indicated below for

the streamwise turbulent heat-flux in their turbulence
model due to the principal problem of the eddy diffusivity
model.

where Cj, is the model constant.

In order to predict the streamwise turbulent heat-flux
without the empirical equation, at least a nonlinear eddy
diffusivity for heat model (NLEDHM) or an algebraic
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heat-flux model (AHFM) is necessary. Moreover, in order
to reflect adequately the buoyant effect for the modeled
Reynolds shear stress, a nonlinear eddy diffusivity for a
momentum model (NLEDM) or an algebraic Reynolds
stress model (ASM) is also required. Recently, explicit alge-
braic models for Reynolds stress and turbulent heat-flux
(EASM and EAHFM), as well as NLEDM and
NLEDHM, have been improved for wall-bounded shear
flows (Hattori and Nagano, 2004; Nagano and Hattori,
2003). Therefore, we have to modify the expressions of
Reynolds shear stress of NLEDM and turbulent heat-flux
of NLEDHM including the buoyant term based on the
nonlinear two-equation heat-transfer model (Abe et al.,
1996; Nagano and Hattori, 2003). In this study, in order
to determine improvements in these modified expressions
for the wall-bounded turbulent shear flows with buoyancy,
an a priori test method with the aid of DNS result (e.g.,
Hattori and Nagano, 2004; Nagano and Hattori, 2003) is
carried out for the evaluation of model expressions. As a
result, we improve the two-equation turbulence models
with NLEDM and NLEDHM for the wall-bounded turbu-
lent shear flows with buoyancy.

2. Governing equations
The Reynolds-averaged equations for nonlinear turbu-

lence models in the buoyancy-affected field can be written
as follows (Nagano and Hattori, 2003):

oU;

i 1
o =0 (1)
DU, 10P 0O oU;

b g (g ) 80 2
DO 0 [ 00 —

where the Boussinesq approximation is used in Eq. 2, and
the Einstein summation convention applies to repeated
indices.

In an NLEDM and an NLEDHM, modeled expressions
for Reynolds stress and turbulent heat-flux are described as
follows:

i — 2Cov,S;; + high-order terms 4)

—0l 27@ + high-order terms (5)
where v, = Cuf,,(kz/s) is the eddy diffusivity for a momen-
tum and O‘_,k = —CyU;ux T, is the anisotropy eddy diffusivity
for heat.

The following transport equations of turbulent quanti-
ties making up the expressions of Reynolds shear stress
and turbulent heat-flux are given:

Dk %k

Dr o ox ox, +Ti+ P+ G —¢ (6)

De %
N T € P — 2J)¢ £ 7
Dt 6x,6x,+ +k(c,1 k C2f8+C3Gk) ( )
Dk, o ko
ﬁ 6)6,6 + Tk() JrPko (8)
DS() 6 &p &p
D = “ax_,-ax_, + T, + T (CpifriPr, — Cpifpi€o)
€

+ f (Cpafp2Pr — Cpofpae + Cpafp3Gy) )

where Py[= —u;1;(0U; /0x;)], Py, [= —u;0(00 /2x;)) are pro-

duction terms, and Gy(= —g;fu;0) is a buoyant term. The
turbulent diffusion terms, Ty, T, Tk, and T, are modeled
individually using the GGDH modeling (Nagano and Hat-
tori, 2003).

3. Evaluations for NLEDHM and NLEDM in
buoyancy-affected wall-shear flows

3.1. Derivation for NLEDHM with buoyancy effect

The transport equation of turbulent heat-flux with the
buoyant term is given as follows:
D _

Dt

where Djy is a molecular diffusion term, 7} is a turbulent
diffusion term, Pj is a production term, Gj, is a buoyant
term, @) is a pressure-temperature gradient correlation
term, and ¢y is a dissipation term, respectively.

The modeled expression of turbulent heat-flux including
the buoyant term is derived using the following relation:
Da?

Dtj \/'\/"( o+ @

1 Py Gy g (P,
2][k(€+8 1)+k0<80 1)} (11)

where a![= u,0/(k'"*k/*)] is the nondimensional turbulent
heat-flux and the diffusive effect is neglected.
In the local equilibrium state, the following relation

o+ Tjo+ Pjo+ Gio + Pjo — &0 (10)

— &0+ Gjo)

holds (Abe et al., 1996):
% =0 (12)
Dr

Regarding @;) and ¢, the general linear expression

(Launder, 1976) with the buoyant effect is employed:

u;0 oU
Djy —ejg = —Cy —— . L Cpuf =

Ox;

J

oUu
+ C,zukH

o, o CugiPko

(13)

In order to obtain the explicit relation for turbulent
heat-flux reflecting buoyancy effect, the procedure pro-
posed in the previous studies (Nagano and Hattori, 2003;
Abe et al., 1996) is adopted. Thus, the NLEDHM with
buoyancy-affected term can be derived as follows (hereinaf-
ter referred to as the NLHNB model):
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— C 00 00
u;) = —ﬁ Ul Tl R it Toy (CoSje + Co3Qye) o
2Cpt,,
- ;:T * {8 — tal(Cor — Cas)Sik

+ (Co2 + Co3) Q2] } g1 Bko (14)

where Cy;, Cgpo, Cgz and Cyy are model constants. In this
study, model constants Cy; = 0.18, Cyp =0.15, Cy3 =0.21
and Cys =0.33 are adopted. The model function frt is
given as follows:
1

Srr =1 +§Ti2 [CH (2% = 8%) + (Cpy — C3,) ] (15)
where $*>=S,,,S,, and @* = Q,,,Q,.

In order to reflect wall effect, the mixed time-scales t,,;
and 7t,, were defined as follows (Nagano and Hattori,
2003):

1.0 2R
Tml = TufRfA 1 +7 —€X
{ R fufu V Pr

T2 = ‘L'ml[l —fw(30)] (17)

1+3.5

bibi
where f = gand £ = (e ) |1+ (Y1)
(26)]
the wall-reflection function (Nagano and Hattori, 2002)

as follows:
_ <Rtm> :
¢

where the modified Reynolds number R, in the model
function f,(¢) is introduced as follows:

are model functions. The model function f,/(&) is

Sw(&) =exp (18)

C[,,,n*Rll/4

Rtm ) A
C,mRtl/4 + n*

(19)
where C,,, is model constant set at 1.3 x 10°.
3.2. Evaluation of derived NLEDHM

Evaluations of the derivative expression (NLHNB
model) in Eq. (14) are conducted using DNS databases
under wall-bounded, buoyancy-affected turbulent flow in
a heated plane channel with unstable or stable stratification
as indicated in Fig. 1(a) (lida and Kasagi, 1997;
Gr=13x10° where AO@ =0, — O, and Re, =150
(unstable case); lida et al, 2002; Gr=4.4x 10° and
Re, =150 (stable case)) and in a vertical heated plane
channel shown as Fig. 1(b) (Kasagi and Nishimura, 1997;
Gr=9.6x10° and Re, = 150). In the case of a vertical
plane channel, the streamwise turbulent heat-flux, u0,
appears clearly in both the transport equations of turbu-
lence energy and its dissipation rate. Also, the turbulent
heat-flux is included in the modeled expression of Reynolds
stress for the buoyancy-affected flow as described later.
Therefore, the streamwise turbulent heat-flux should also
be predicted exactly by the model. Fig. 2 shows the results
of assessments for the NLHNB model of the streamwise

Stable case Unstable case
Heated wall Cooled wall
On g 8¢

Flow — |
Cooled wall Heated wall
Oc (a) On
Heated wall  Cooled wall
@H @c
|
g
T
,y ﬁ
# Flow
(b)

Fig. 1. Flow geometry for model evaluation: (a) heated stable/unstable
plane channel, (b) heated vertical plane channel.

Re.=150
5% Gr=9.6 X 10°

—— NLHNB
Heated Wall

. Cooled Walll

0 1 2
y/o

Fig. 2. Evaluation result for modeled streamwise turbulent heat-flux
(vertical heated plane channel flow).

turbulent heat-flux in the vertical heated plane channel
flow. It can be seen that the NLHNB model underpredicts
streamwise turbulent heat-flux. Also, in cases of heated
plane channel with unstable or stable stratification, obvi-
ously, underpredictions of turbulent heat-flux are observed
as shown in Fig. 3. On the other hand, the wall-normal tur-
bulent heat-flux predicted by the NLHNB model is shown
in Figs. 4 and 5. It is clear that the wall-normal turbulent
heat-flux is not reproduced accurately in these cases. Con-
sequently, we improve the modeled expression of turbulent
heat-flux to predict wall-bounded buoyancy-affected turbu-
lent flows.

3.3. Evaluation of existing NLEDM

In the velocity field, since the NLEDM reflecting buoy-
ancy effect was derived by So et al. (2002) in two-dimen-
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Cooled Wall ' "Heated Wall
0
-: Y Unstable case
oD, O DNS
)
"o e
- 00~ D Gr=1.3x10
-~ — Oo 0 -
000 =<
Stable case jCsmEEEy 014 VA
O DNS c ]
----NLHNB Sy
Gr=4.4x10° Re, =150 QO
. I .
1 2

Fig. 3. Evaluation result for modeled streamwise turbulent heat-flux
(stable/unstable heated plane channel flows).

[ Heated wall Cooled Wall |

Re, =150
Gr=9.6x10’°

Fig. 4. Evaluation result for modeled wall-normal turbulent heat-flux
(vertical heated plane channel flow).

4 | Cooled Wall / '\\ "Heated Wall|
Unstable case Iy Stable case

3 "0 DNS O DNS

- —— NLHNB ‘\ — —NLHNB -

+ 2F Gr=13%10° Gr=4.4%x10°

Fig. 5. Evaluation result for modeled wall-normal turbulent heat-flux
(stable/unstable heated plane channel flows).

sional buoyant flows (hereinafter referred to as the SVIZG-
O model), we evaluate whether or not NLEDM is applica-
ble in wall-bounded buoyancy-affected turbulent flows.
The SVJZG-O model is given as follows:

1 . .
+ Q(3) (S*Z _ g{S*Z}I) + Q(4)fa< + Q(S)(f*g* _ Q*fx)
(20)

=1g1(2 - C3)S;, Q" =
f,, = G;/Gi — jzd are the

where b’ = b, = (23)b;, 8" = 5]
Q;; =321(2 - C4)Q; and " =

nondimensional tensors, respectively, I = d;; is the identity
tensor, G;; = [f(g,u,9+glu19) is the buoyant term in the
transport equation of Reynolds stress, and 5 is the
two-dimensional tensor first proposed by Pope (1975).
Model coefficients Q-0 in Eq. (20) are given as
follows:

1 *QF * ok G*
o = D, 1——({fS F+2H{QSTHG 3] 0¥ =W
(1)
Q<3>:fziQ“L71 ({f'S*}+2{Q'Sf'})G" + e
D1 D2{S*2} {S*Z}
(22)
ov—L g o_l g (23)
2D, 2D,

Dy =— (1 %{S*z} - 2{9*2}> c Dy=—(1-2{Q%})  (24)

(Cs—1)(C3—2) 1. P G - k
A RIRYASE BN —C 771 ==
2 —9F Ok g= 1t ;T

G =
2 &

(25)

where C; =34, C;,=0.36, C3=1.25, C4, =04 and Cs=
0.3 are model constants.

The SVJZG-O model is assessed to be identical with
cases for thermal field using DNS databases. Fig. 6 shows
a result of evaluation in the vertical heated plane channel
flow. Note that the dashed line indicates the result of the
SVJZG-O model and the solid line shows the modified
model (SVIZG-M model). Since Eq. (24) often gives a neg-
ative value in parentheses at large {Q*?}, the model over-
predicts remarkably near the wall as shown in Fig. 6.
Thus, to avoid the overprediction, the functions are modi-
fiedas Dy = —(1 — 28" +2{Q"}) and D, = —(1 +2{Q"*}).
The SVIZG-M model is also evaluated in an unstable
heated plane channel flow as shown in Fig. 7. In this case,
the model obviously gives an overprediction near the wall.
From these evaluations, the predictions are improved in
most parts of the channel, but the near-wall behavior of
model prediction should be carefully corrected.

Re, =150 o i
Gr=9.6x10°

v ~---SVIZGO | |
I ——SVIZG-M ! [
i 1
5 :. ,,' Heated Wall Cooled Wall ,,'
0 1 2

y/o

Fig. 6. Evaluation result for modeled Reynolds shear stress (vertical
heated plane channel flow).
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| Cooled Wall

[ Re,=150
| Gr=1.3x%10°

O DNS
—— SVIJZG-M S

) I . ‘ Heated Wall ]|
1.50 1 >

y/é

Fig. 7. Evaluation result for modeled Reynolds shear stress (unstable
heated plane channel flow).

4. Newly proposed NLEDHM and NLEDM
4.1. Modification of NLEDHM

So far, the modeling for the dissipation term, ¢;, in the
transportation of turbulent heat-flux has been omitted,
because the dissipation does not influence the prediction
of wall-normal heat-flux in the wall-bounded flow. How-
ever, the dissipation affects predicting the streamwise
heat-flux in the wall-bounded flow. Therefore, we intro-
duce the effect of the dissipation-rate into the modeling
for @;; and ¢y as follows:

u,0 —oU; —0U,
@j@ — 8]»(9 = —C,] TL + Ctﬂk@gkj + C,3uk6§.k
u J
06
+ Cisg; ko — Cuttitt; Ay — . — CAugiPko  (26)

where A, (= i /k) is the nondimensional Reynolds stress
tensor. The 06 /0x;-related term is included, because the
production of ¢ is strongly affected by the temperature
gradient. Note that the adopted buoyant term is proposed
by Craft et al. (1996). Thus, substituting Eq. (26) into Eq.
(11), we can obtain the following equation:

Da; 1 1 — (0] —
EAp —_ [—ujH — Cglrb,ujuk& — ngTuMkHSjk
k

Dt Vivk Cotu

2}
— Cosu, 092y — Coa Uiy z— o — Cosug; Py
1 u,0 & Pk Gk
— Cortadpg Pho| — = —d¥ _|E (T Tk _y
06Tud k81 P 0} 2 ik {k(a += )

s )
+ 9 (Th 27
ko (80 @7

where Cp; =1/Cy1, Cpp=(1 — Co — Ci3)/Cp, Copz=(1 —
Cn+ Cn)/Cy, Cou= CulCpy, Cps = (2 — C5)/Cyy and Cpg =
C,6/C,1 are model constants. Also, under the local equilib-
rium state, Da;f /Dt = 0, the following relation is derived:

m 1 Cm Pk Gk C()l Pk,;
1 R il
el el

2 Cpk 00 w0
=—(8y +3by) = CppSy + Ce3Q

O+ 3b)3 NN = (ConSy - Co )f\/_
2 kCp 00 Cys

© ‘/)3 Vv Yo Vky/ vg]'g ’

C96
- Aqg, Bk 28
\/lz\/k_ﬁ Jkgkﬁ 0 ( )

Here, instead of the characteristic time-scale of the left-

hand side of Eq. (28), the mixed time-scale 7,, is introduced

for considering the wall effect.
Ty

1+ @+8-1) +% (1)

&0

— T, (29)

In this study, the mixed time-scale is modeled as follows
(Nagano and Shimada, 1996):

f 2R 2R b, R\
o {ZR —c, Vi P [(‘ b;\2> W (30)

In order to derive the NLEDHM, the following nondi-
mensional quantities are introduced:

2 C()]k’[’m 6@
b5, =3by, OF== b
Jk Jks k 3\/k‘\/k—oaxk7
Sik = CootwSi, 2 = Costm Qe
. 2Cukt, 30 . 2 Cysty o, f (31)
k 3\/];\/]?06)(;]{’ J 3\/’\/— &jPKo,
2 CHG-Cm
*__ 2 k
k 3\/12\/16—0&(3 0

Using Egs. (31), Eq. 30 is transformed into the following
simple form:
a; =

—(0p + b;k)@z - “Z(S,*'k + ij) — (65 + b;})AikTZ
— G — Ay F; (32)

J

Finally, the following explicit form regarding a; can be
obtained from Eq. (32):

" 1 .
a; :m{[*(éﬁrbﬂ

+ [= (0 +bj) i+ (00 + b)) (S5, + 25,)Aul T

— [0 = (Sj + )]Gy = [0)0 = (Sjy + Qi) Ak} (33)
where Q7 = Q;Q) and § =SS},

Eq. (33) can be rewritten 1n the dimensional form as
follows:

+ (o + by ) (S, + ©25,)| O

— a@ 2 00

il = —o) — * Bx f "= (Corttgtty + Costigtt;Aix ) (CpaSjo + Cos Q2 )6x

k RT '

2Co6Tng Pk,

06f7gkﬁ0[5 (Coszk + CﬁzQ/k)}
RT

2CoytuAug Bk

_ mf—lkgkﬁg [0je = T (CoaSje + Co32;0)] (34)
RT

where the anisotropic eddy diffusivity for heat is given as
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Table 1
Model constants and functions of proposed NLEDHM
Cim Ry, Jwl(&) Cor Copz Co3 Coa
1.3x 102 Comn* R Egq. (18) 0.14[1 — £,(40)] 0.05 0.11 0.3
CtmRtl/4 + n*
Cos Cos Co7 C B Ty )
0.3[1 — fu(40)F 0.21 — £4(20)] 0.2[1 — £4(20)] 0.25/Pr'/* 1+2Pr k ko
20P04 & €
R Tl?l
T 2R \/ﬁ 30 R\
o R+ G NP _<B,11 i
oy = Sm_ (Cortizity + CoutiitiAy) (35) Introducing the Reynolds stress apiso?ropy tensor
JRT b;; = wu;/2k — 6;;/3 and neglecting the diffusive effect, the
1 following relation is derived with Eqgs. (6) and (39):
fir = 15 {mall = A0 P (Cs0 — CioS?) oM 1g ) q 5( /)3 (39)
Y_ __ (p.. , P N S ) Sl _
where model constants and functions in Eq. (34) are indi- Dt 2k (Py + Gy + Py — &) k (P + G —¢)

cated in Table 1.

To model the transport equation for thermal field, the
turbulent diffusion terms in Egs. (8) and (9) are modeled
by GGDH modeling (Nagano and Hattori, 2003):

0 k Oky
T = — — R _
%0 ax, (Chfm SfRMjW ax) (37)
0 k 689
TE() :a—xj (Cd)fgz;f;gujuga—x[) (38)

Also, model constants and functions in Egs. (8) and (9)
are indicated in Table 2.

4.2. Modification of NLEDM

The transport equation of Reynolds stress with the
buoyant term is given as follows:

Duiuj

D[ :Dij'i‘T,:/“v‘Pij"‘Gl‘j"‘q)jj_g{j (39)

where Dj; is a molecular diffusion term, T} is a turbulent
and pressure diffusion term, P; = —uu(0U,;/x;)—
W@Ui/axk) is a production term, G; = —,B(gjm—&-
gu;0) is a buoyant term, ®;; is a pressure—strain correlation
term and & is a dissipation term, respectively.

(40)
In the local equilibrium state, since the relation Db,/
Dt =0 holds, Eq. (40) yields the following relation:

5
(P + Gy + &y — &) Zz(bijﬂL?])(PkJer—ﬁ) (41)

Using the form ¢; = %sé,-jJrDs,-j of the dissipation term
(Gatski and Speziale, 1993) for Eq. (41), we can obtain

2 2
(Pr+ G —e)byj = —ZkS;; — k <biijk +bjSu — _bmnSmnéij>

3 3
1
—k(buQ + by Qu) + EHU
1 2
+ 5 (Gi' - géiij) (42)

where I1;;= ®; — pey, and the modeled I1; is employed as
the following general linear model with the buoyant term.

H[j = —C]Sb,'j —+ CszU

2
+ Csk (biijk + bySi — gbmnSmnéij>

2
+ C4k(biijk + bij[k) - C5 (G’/ - 3511Gk> (43)

where C1—Cs are model constants.

Table 2
Model constants and functions of transport equations for ky and &
Cpi Cp> Cps Co fr fp2 Sp3 Cpi /b1
0.85 (R + 0.4/Pr'%) 0.64 1.2 1.9 1 —fu(1) 1.0 1.0 1 —fu(4) 1.0
Cpaf2 Coo/in
k. s ok s Pl" Rtm 2
Chafpa |1+ CpafpsVR | 1+ C: R (Cafo = 1)1 —exp |—(Cq s
.ﬁ:Z CZ)3 f;)} Cz Cx:t f()l ﬁ)2
R\2 0.025 fw(30) 3.0 1+ pr's 1+ 5£.(5) 1 + 201, (10)
1-0. ——=
0.3exp <6.5)
Ci Co fr

2R/(R+0.5)
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Substituting Eq. (43) into (41) and introducing nondi-
mensional quantities, we can obtain the following relation:

* * X Q% * * 2 * PR
bij = _Sij - <b7ijk bijik - gkaSk/,af/)

+ b;k Qltj + b;kglti - fij (44)
where
S* 2gT(2 (‘:3)5’117 Q;; = lg‘c(Z — C4)Qij,
b, = (C 7§)bij7 T=14
Cs=1)(C3-2) 2 (43)
f ng_g)k(Gij _§Gk5ij);
— e+t sy

Eq. (45) can be written in the matrix form as
2
b* = -S" — (b*S* +S'b" — 5{b*S*}I> +b' Q" — Qb —{”
(46)
In order to derive an explicit form of b* from Eq. (46),
the integrity basis, b* = 3,0’ T" first proposed by Pope
(1975), is used with the following seven basis tensors (So
et al., 2002):

™ =8, T® = ' Q" — Q'f
(2) —S'Q - Q'S TO — 2 _ %{f*z}l
T® =87 - LS, T7 =S +Sf - 2{f'S'}
™ = ¢
(47)
Substituting Eq. (47) into b* = 3,0 T® gives

b = 0MS* + 02 (S Q"
+ Q(?) (S*Z —%{S*Z}I) + Q(4)f* + Q(S)(f*g* _ Q*f*)

— Q'S

(48)

On the other hand, substituting the scalar functions H
and J related with T” indicated by Pope (1975),
T“’S +s T 2{T SN =3 H, T and TYQ'-—

=>Ji T and the integrity basis into Eq. (46)
give the followmg equation for T™:

Z;.Q(;")TW — _ Z 5IAT(1) _ [Z Q(i) (Z HMT(X))
A A A
+ Z o <Z J;,,,TO‘)) - Z 5y, T (49)
A A A

Eq. (49) can be written as Q" :A}T;}Bi, where A4,, =

—0,y — Hy, +J;,, and B, =6;,+ d4,. By using Cayley—
Hamilton 1dent1tles the matrices H;, and J;, can be deter-
mined. Thus, we can obtain Q'Y using Mathematica as
follows:

A AL N
51 0O —_q ol (50)
0 o O , O
where
2
D, =— 1—§ﬂ1_2772 ) D2:_(1_2n2) (51)

with n, = (87,8;)"% and n, = (2;,2;)"".
Therefore, we can obtain the expression of Reynolds

shear stress with buoyant effect for NLEDM as follows:

* 3 * % Yk sk QK
by = T3 a6l { i+ (Sl — Sy)
* ek 1 * Ok
- 2<SikSkj 3SmnSnmél]):|
g Vi - 2
+ (s + i - f,Z,,S,’;n%)] (52)
where n=n, = (S;57)"" (== (2,2,)"” and f;=

— (2/3)Gyd;;. Note that in order to avoid an inappropri-
ate value of D; and D, referring to the assessment results,
D and D, in Eq. (51) are modeled as Dy = (3 — 21> + 6{2)/
3and D> = 1 + 2{2, respectively. Here, the nondimensional
forms of bj;, S7;, ©;; and f}; are adopted as follows (Abe

et al., 1997; Nagano et al., 1997):
b:; = CDbij7 SZ*J = CD’ES,‘j,
Q:; =T12CptQy, f;; = Co(Tme/K) [ (53)

Consequently, the newly proposed expressions are as
follows:

2 2v, 4Cpkf
i ':_kéi'_—Sl"— TSIQ_QZS
Hit = 3koy = 2 Sy =~ (S — QuSky)
4Cpkf . 1
+ fr (SikSkj - §S1nnSmn5ij>
ZCngg 4Cgri1g
_ - W Qu— Qufo
Cofr Sy Jr2 K u)
2C,t 2
fR (kak] + Szkfkj fmnSmnéij) (54)
22 2
Jur =1+ 52 (Cpta, '@ + 3 (Cpa,) (2 = 8°) (55)
3 3
fro =1+ 8(Cprg, )P (56)

where 7,,, is the mixed scale of velocity and thermal fields,
and f; is the function of characteristic time-scale reflecting

wall-limiting behavior (Nagano and Hattori, 2003) as
follows:
fo=15,+ T, (57)

where the characteristic time-scale 1z, is given by v,/k, and
g, 1s the wall-reflection time-scale. The other model con-
stants and functions in Eq. (54) are indicated in Table 3.
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Table 3
Model constants and functions of proposed NLEDM
Cy CD C»] CL'I CL2 Cg C/ Ting
0.12 0.8 5.0 0.4 1.0 x 10? —-0.7 0.1 C;f;g
Ju (&)
40 R\ Eq. (18)
1 fw(32)]{1 +Wexp { <§>
. t
S
2R 15 Ron)*/*
11 fw(25)]{1 + ﬁwexp { (%)
TRy TRy fb’
n 2002 _ 2
¥ lfR]/CD<1 B 3Cu1fla>f2 1+ Cy(Cpta,) (2 = 8%)
6 fSQ 8 vl
fse Sy
Qs 52 o2 : 1+ \/551,,
R N
fvl fuz
_ (R /52)*S; 1 —exp (7 VR
(Rin/52)" +5, Co
Table 4 5. Results and discussion
Model constants and functions of transport equations for k and ¢
Ca C Ca Cs Ce The evaluations for the newly improved models are
1.45 1.9 1.2 1.4 1.8 shown in Figs. 8-15. The predictions of the conventional
fi: ftl f12

1 +107,,(10)
[1 - f(32)]'2

Coze | (BY 1+ 15£,(10)
{1 0.3ep{ (6.5)}}[1 Sw(3.7)] [lffw(32)]1/2

To model the transport equation for the velocity field,
the turbulent diffusion terms in Egs. (6) and (7) are mod-
eled by GGDH modeling (Nagano and Hattori, 2003):

0 Vv ok

T = — . — U Uy —
k 6xj (Csﬁl A Uy ax() (58)

0 v, Oe

T = — — 1 P
s <Csft2 it ax[> (59)

Also, the model constants and functions in Egs. (6) and
(7) are indicated in Table 4.
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Fig. 8. Distributions of mean velocity in vertical heated plane channel
flow.
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Fig. 9. Distributions of Reynolds shear stress in vertical heated plane
channel flow.
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Fig. 10. Distributions of mean temperature in vertical heated plane
channel flow.



680 H. Hattori et al. | Int. J. Heat and Fluid Flow 27 (2006) 671-683

Heated Wall _Cooled Wall eddy viscosity model reflecting the buoyant effect (Yin
o DNS | et al., 1991; YNT model, Murakami et al., 1996; MKCO
Present | model) and a constant turbulent Prandtl number (Pr;=
""" YNT 0.9) model are also included in these figures for compari-
-——=-MKCO . . - .
son. The numerical technique used is a finite-volume

method (Hattori and Nagano, 1995; Nagano and Hattori,

2003).
"""""" In the case of a vertical heated plane channel flow shown

4}
Re.=150 a h
'Gr=9.6 X 10° as Figs. 8-12, it can be seen that almost all models accu-
-8 L | A
0 1 2
y/o
Cooled Wall Heated Wall
Fig. 11. Distributions of streamwise heat-flux in vertical heated plane S T . cated Wa
channel flow. O DNS Present Re.=150
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Fig. 12. Distributions of wall-normal heat-flux in vertical heated plane
channel flow.
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Fig. 13. Distributions of mean temperature in unstable heated plane
channel flow.
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Fig. 14. Distributions of streamwise heat-flux in unstable heated plane
channel flow.

Fig. 16. Distributions of wall-normal turbulent heat-flux in stable heated
plane channel flow.



rately predict Reynolds shear stress, mean temperature and
turbulent heat-fluxes. In this case, since the streamwise tur-
bulent heat-flux, u0, appears explicitly in the transport
equations with the buoyant term, Gy, the adequate predic-
tion of u0 should be required. Only the present model gives
an adequate prediction of the streamwise turbulent heat-
flux as shown in Fig. 11. Thus, the present models can

accurately predict this flow.
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Fig. 17. Distributions of streamwise turbulent heat-flux in stable heated

plane channel flow.
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Fig. 18. Distributions of Reynolds shear stress in stable heated plane

channel flow.
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Fig. 19. Distributions of Reynolds normal stress in stable heated plane

channel flow.

The proposed model can accurately predict the cases of
unstable heated plane channel flows as indicated in Figs. 13
and 14. In this case, since the turbulence energy is also

O,=308 K
U,=0.6 m/s ‘
0,=288 K
Ly=0.018 m )
: :
0= 288 K Oc= 28K |~
=
— |
\ X 0,=288K U, =045 m/s
H=1.04m M Ly =0.024m

L.

Fig. 20. Two-dimensional enclosed space with supply and exhaust.
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Fig. 21. Predicted profiles of mean velocity, U (x/H = 0.5).
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underpredicted due to the overprediction of ¢ near the wall,
the streamwise Reynolds normal stress, #2, gives an under-
prediction compared with the DNS result (figure not
shown here). Thus, the streamwise turbulent heat-flux is
slightly underpredicted by the proposed model, but the
others cannot predict as shown in Fig. 14.

Next, the proposed model is evaluated in the case of sta-
ble heated plane channel flows as shown in Figs. 15-19. In
this case, even the linear turbulence models reflecting the

O Experiment -
Present R
----AKN
1 L 1 " 1 L
0.4 0.6 0.8 1
(0-0y)/AO

Fig. 22. Predicted profiles of mean temperature at the horizontal center
cross-section (x/H = 0.5).
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IS olp 0 222 X _____|
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_ A ] ) ] A ! . 1 :
0'40 0.2 0.4 0.6 0.8 1

a/H
Fig. 23. Predicted profiles of mean velocity, V, (y/H = 0.5).

04 T T T T T T T T
O Experiment

L Present
0.3 ----AKN

Fig. 24. Predicted profiles of mean velocity at the vertical center cross-
section (y/H = 0.5).

buoyancy effect except for the Pr.= constant model give
reasonable predictions except for the streamwise turbulent
heat-flux. However, the predicted turbulent quantities of
the proposed model give better predictions of other models’
agreement with DNS results in various Grashhof number
flows.

Thus, it is concluded that the present model is available
for accurate prediction of wall-shear flows with buoyancy.
Note that Reynolds shear stress and the anisotropy of tur-
bulent intensities near the wall are appropriately obtained
by the proposed model as indicated in Figs. 18 and 19.

Finally, in order to confirm the model performance, a
cavity flow with stable stratification (Blay et al., 1992) is
predicted using the proposed model. The flow conditions
are shown in Fig. 20, and Archimedes number 4r = 0.034
and Reynolds number Re = 722 are set. The results of pre-
dictions are shown in Figs. 21-24. The AKN model apply-
ing buoyant flow calculation which is the linear two-
equation heat transfer model is included for comparison.
Obviously, the predictions of proposed model indicate
good agreement with experimental data.

6. Conclusions

DNS-based evaluations of the modeled expressions for
Reynolds stress and turbulent heat-flux for NLEDM and
NLEDHM are conducted in wall-shear flows with buoy-
ancy. In particular, it is found that the streamwise turbu-
lent heat-flux, u0, is underpredicted in all cases. In the
case of a vertical plane channel, the streamwise turbulent
heat-flux, u0, appears clearly in the transport equations
for turbulence energy, its dissipation rate and dissipation
rate of temperature variance. Also, the turbulent heat-flux
is included in the modeled expression of Reynolds stress for
the buoyancy-affected flow. Therefore, the streamwise tur-
bulent heat-flux should also be exactly predicted by the
model. Thus, we have proposed here a new nonlinear
two-equation turbulence models which can satisfactorily
predict wall-shear flows with buoyancy.
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