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Abstract

The main objective of this study is to construct new nonlinear eddy diffusivity models reflecting buoyant effects in wall-bounded tur-
bulent shear flows and heat transfer. It is now well known that the turbulent heat-fluxes, which are the key quantities for the prediction of
turbulent flows with buoyancy, are not modeled accurately by employing the conventional turbulence models using eddy diffusivities. In
order to appropriately predict wall-bounded turbulent flows with buoyancy, an innovative turbulence heat-transfer model with eddy dif-
fusivities which are composed of the k–e two-equation model for velocity field and the kh–eh two-equation model for thermal field, must
be constructed. Consequently, we should improve the modeled expressions for Reynolds stresses and turbulent heat-fluxes reflecting the
buoyant effect in wall-bounded turbulent shear flows. The existing two-equation turbulence models were evaluated on the basis of the
DNS data of channel flows with buoyancy. Using the results of evaluation, we constructed new modeled expressions for Reynolds stres-
ses and turbulent heat-fluxes in explicit algebraic models, and reconstructed the nonlinear two-equation turbulence models for the buoy-
ancy-affected wall-shear flows and heat transfer, including the newly proposed nonlinear eddy diffusivity for a momentum model
(NLEDM) and the nonlinear eddy diffusivity for heat model (NLEDHM). The proposed nonlinear two-equation turbulence models
reflecting buoyancy effect appropriately predict wall-bounded turbulent shear flows with buoyancy given by DNS.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The main objective of this study is to construct nonlin-
ear two-equation turbulence models reflecting the buoyant
effect in wall-bounded turbulent shear flows and heat trans-
fer. Wall-bounded turbulent shear flows with buoyancy
have been encountered in many engineering-relevant appli-
cations such as a flow in a computer or room. Two-equa-
tion turbulence heat-transfer models for analysis of
forced convection have been developed to accurately calcu-
late forced convective turbulence flows (e.g., Nagano and
Hattori, 2003; Hattori and Nagano, 1998; Abe et al.,
1996; Nagano and Shimada, 1996). Since the buoyancy
effect is hard to reflect properly in the modeled expressions
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of Reynolds shear stress and turbulent heat-flux using the
linear eddy diffusivities, two-equation turbulence heat-
transfer models might not be adequate for an analysis of
turbulent shear flow with buoyancy. For example,
although the transport equations for Reynolds shear stress
and turbulent heat-flux have a buoyant term, respectively,
reflecting adequately this term in relevant eddy diffusivities
might be difficult. On the other hand, in order to predict
adequately wall-bounded turbulent flow with buoyancy, a
conventional two-equation heat-transfer models might
not be appropriate, because the streamwise turbulent
heat-flux needed to predict the flow cannot be calculated
by the model for the model definition. Murakami et al.
(1996) proposed linear eddy diffusivity models (EDMs)
for buoyancy-affected flow. Here, the buoyant effect is
included in the buoyant-reflected model function. How-
ever, this function has to be conditionally applied in the
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Nomenclature

Ar Archimedes number, gbDHL0/U0

bij anisotropy tensor, uiuj=2k � dij=3
cp specific heat at constant pressure
C0 model constant
CD, Cg constants in nonlinear model
CD1, CD2, CP1, CP2, CP3 constants in transport equation

for eh
Ck, Cm constants in eddy diffusivity for heat
Cl constant in eddy viscosity
Ce1, Ce2, Ce3 constants in transport equation for e
fB function to guarantee realizability of anisotropy

tensor
fD1, fD2, fP1, fP2, fP3 functions in transport equation for

eh
fR function of time-scale ratio
fw(n) wall-reflection function
fe low-Reynolds-number model function in trans-

port equation for e
fk low-Reynolds-number model function in eddy

diffusivity for heat
fl low-Reynolds-number model function in eddy

viscosity
k turbulence energy, uiui=2

kh temperature variance, h2=2
gi gravitational acceleration
Gr Grashhof number, gbDH(2d)3/m2

n local coordinate normal to wall surface
n* nondimensional distance between point and

nearest point on whole surface, uen/m
P mean static pressure
Pr Prandtl number, m/a
R time-scale ratio, sh/su

Reb Reynolds number based on bulk velocity,
2U bd=m

Res Reynolds number based on friction velocity,
usd/m

Rt turbulent Reynolds number, k2/me
Sij strain-tensor, ðoU i=oxj þ oU j=oxiÞ=2
ts friction temperature, qw/(qcpus)
U ; V ;W mean velocity in x-, y- and z-directions, respec-

tively

u,v,w turbulent fluctuation in x-, y- and z-directions,
respectively

Ub bulk velocity
Ui mean velocity in xi-direction
ui turbulent fluctuation in xi-direction
us friction velocity,

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
ue Kolmogorov velocity scale, (me)1/4

xi Cartesian coordinate in i-direction
x, y, z Cartesian coordinate in streamwise, wall-normal

and spanwise directions, respectively
y+ nondimensional distance from wall surface,

usy/m

Greek symbols

a, at molecular diffusivity and eddy diffusivity for
heat

at
ij anisotropy eddy diffusivity for heat

b coefficient of volume expansion
d half-width of channel
dij Kronecker delta
DH temperature difference between local and refer-

ence points, Hl �Hr

e dissipation rate of turbulence energy,
mðoui=oxjÞðoui=oxjÞ

eh dissipation rate of temperature variance,
aðoh=oxjÞðoh=oxjÞ

m, mt kinematic viscosity and eddy diffusivity for
momentum

q density
Xij vorticity tensor, ðoUi=oxj � oUj=oxiÞ=2
s characteristic time-scale of turbulence
sm hybrid/mixed time-scale
sh time-scale of temperature field, kh/eh
su time-scale of velocity field, k/e
sw wall-shear stress
H mean temperature
h temperature fluctuation
ð Þ ensemble- or time-averaged value
( )+ normalization by inner variables (us, ts,m)
D/Dt substantial derivative, o=ot þ Ujo=oxj
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specific Reynolds shear stresses and turbulent heat-fluxes,
i.e., the model function depends on components of turbu-
lent stresses and turbulent heat-fluxes. Also, the improve-
ment of a prediction for a streamwise turbulent heat-flux
was not modeled in particular. It is well known, however,
that only linear eddy diffusivity models were successful in
predicting the turbulent heat-flux in a turbulent natural
convection flow along a vertical plate (Yin et al., 1991;
hereinafter referred to as the YNT model). The same inves-
tigators adopted the empirical equation indicated below for
the streamwise turbulent heat-flux in their turbulence
model due to the principal problem of the eddy diffusivity
model.

�uh ¼ Ch
�uv

k
vh

where Ch is the model constant.
In order to predict the streamwise turbulent heat-flux

without the empirical equation, at least a nonlinear eddy
diffusivity for heat model (NLEDHM) or an algebraic
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heat-flux model (AHFM) is necessary. Moreover, in order
to reflect adequately the buoyant effect for the modeled
Reynolds shear stress, a nonlinear eddy diffusivity for a
momentum model (NLEDM) or an algebraic Reynolds
stress model (ASM) is also required. Recently, explicit alge-
braic models for Reynolds stress and turbulent heat-flux
(EASM and EAHFM), as well as NLEDM and
NLEDHM, have been improved for wall-bounded shear
flows (Hattori and Nagano, 2004; Nagano and Hattori,
2003). Therefore, we have to modify the expressions of
Reynolds shear stress of NLEDM and turbulent heat-flux
of NLEDHM including the buoyant term based on the
nonlinear two-equation heat-transfer model (Abe et al.,
1996; Nagano and Hattori, 2003). In this study, in order
to determine improvements in these modified expressions
for the wall-bounded turbulent shear flows with buoyancy,
an a priori test method with the aid of DNS result (e.g.,
Hattori and Nagano, 2004; Nagano and Hattori, 2003) is
carried out for the evaluation of model expressions. As a
result, we improve the two-equation turbulence models
with NLEDM and NLEDHM for the wall-bounded turbu-
lent shear flows with buoyancy.

2. Governing equations

The Reynolds-averaged equations for nonlinear turbu-
lence models in the buoyancy-affected field can be written
as follows (Nagano and Hattori, 2003):

oU i

oxi
¼ 0 ð1Þ

DU i

Dt
¼ � 1

q
oP
oxi
þ o

oxj
m
oU i

oxj
� uiuj

� �
� gibDH ð2Þ

DH
Dt
¼ o

oxj
a
oH
oxj
� ujh

� �
ð3Þ

where the Boussinesq approximation is used in Eq. 2, and
the Einstein summation convention applies to repeated
indices.

In an NLEDM and an NLEDHM, modeled expressions
for Reynolds stress and turbulent heat-flux are described as
follows:

uiuj ¼
2

3
kdij � 2C0mtSij þ high-order terms ð4Þ

ujh ¼ �at
jk

oH
oxk
þ high-order terms ð5Þ

where mt = Clfl(k2/e) is the eddy diffusivity for a momen-
tum and at

jk ¼ �Ct0ujuksm is the anisotropy eddy diffusivity
for heat.

The following transport equations of turbulent quanti-
ties making up the expressions of Reynolds shear stress
and turbulent heat-flux are given:

Dk
Dt
¼ m

o
2k

oxjoxj
þ T k þ P k þ Gk � e ð6Þ
De
Dt
¼ m

o2e
oxjoxj

þ T e þ
e
k
ðCe1P k � Ce2feeþ Ce3GkÞ ð7Þ

Dkh

Dt
¼ a

o2kh

oxjoxj
þ T kh

þ P kh
� eh ð8Þ

Deh

Dt
¼ a

o
2eh

oxjoxj
þ T eh þ

eh

kh
ðCP1fP1P kh

� CD1fD1ehÞ

þ eh

k
ðCP2fP2P k � CD2fD2eþ CP3fP3GkÞ ð9Þ

where P k½¼ �uiujðoUi=oxjÞ�, P kh
½¼ �ujhðoH=oxjÞ� are pro-

duction terms, and Gkð¼ �gjbujhÞ is a buoyant term. The
turbulent diffusion terms, Tk, Te, T kh

and T eh , are modeled
individually using the GGDH modeling (Nagano and Hat-
tori, 2003).

3. Evaluations for NLEDHM and NLEDM in

buoyancy-affected wall-shear flows

3.1. Derivation for NLEDHM with buoyancy effect

The transport equation of turbulent heat-flux with the
buoyant term is given as follows:

Dujh
Dt
¼ Djh þ T jh þ P jh þ Gjh þ Ujh � ejh ð10Þ

where Djh is a molecular diffusion term, Tjh is a turbulent
diffusion term, Pjh is a production term, Gjh is a buoyant
term, Ujh is a pressure–temperature gradient correlation
term, and ejh is a dissipation term, respectively.

The modeled expression of turbulent heat-flux including
the buoyant term is derived using the following relation:

Da�j
Dt
¼ 1ffiffiffi

k
p ffiffiffiffiffi

kh

p ðP jh þ Ujh � ejh þ GjhÞ

� 1

2
a�j

e
k

P k

e
þ Gk

e
� 1

� �
þ eh

kh

P kh

eh
� 1

� �� �
ð11Þ

where a�j ½¼ ujh=ðk1=2k1=2
h Þ� is the nondimensional turbulent

heat-flux and the diffusive effect is neglected.
In the local equilibrium state, the following relation

holds (Abe et al., 1996):

Da�j
Dt
¼ 0 ð12Þ

Regarding Ujh and ejh, the general linear expression
(Launder, 1976) with the buoyant effect is employed:

Ujh � ejh ¼ �Ct1
ujh
su
þ Ct2ukh

oUj

oxk
þ Ct3ukh

oUk

oxj
þ Ct4gibkh

ð13Þ

In order to obtain the explicit relation for turbulent
heat-flux reflecting buoyancy effect, the procedure pro-
posed in the previous studies (Nagano and Hattori, 2003;
Abe et al., 1996) is adopted. Thus, the NLEDHM with
buoyancy-affected term can be derived as follows (hereinaf-
ter referred to as the NLHNB model):



Fig. 1. Flow geometry for model evaluation: (a) heated stable/unstable
plane channel, (b) heated vertical plane channel.

Fig. 2. Evaluation result for modeled streamwise turbulent heat-flux
(vertical heated plane channel flow).
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ujh ¼ �
Ch1

fRT

ujuksm1

oH
oxk
� u‘uks

2
m2 Ch2Sj‘ þ Ch3Xj‘

� � oH
oxk

� �

� 2Ch4sm2

fRT

fdjk � sm2½ðCh2 � Ch3ÞSjk

þ ðCh2 þ Ch3ÞXjk�ggkbkh ð14Þ
where Ch1, Ch2, Ch3 and Ch4 are model constants. In this
study, model constants Ch1 = 0.18, Ch2 = 0.15, Ch3 = 0.21
and Ch4 = 0.33 are adopted. The model function fRT is
given as follows:

fRT ¼ 1þ 1

2
s2

m2 C2
h2ðX2 � S2Þ þ ðC2

h3 � C2
h2ÞX2

	 

ð15Þ

where S2 = SmnSmn and X2 = XmnXmn.
In order to reflect wall effect, the mixed time-scales sm1

and sm2 were defined as follows (Nagano and Hattori,
2003):

sm1 ¼ sufRfA 1þ 1:0

R3=4
t fRfA

ffiffiffiffiffiffi
2R
Pr

r
exp � Rtm

12:0

� �3=4
" #( )

ð16Þ

sm2 ¼ sm1½1� fwð30Þ� ð17Þ

where fR ¼ 2R
0:5þR and fA ¼ 2

1þ3:5
ffiffiffiffiffiffiffi
bijbij

p
� ��

1þ 1þ3:5
ffiffiffiffiffiffiffi
bijbij

p
2

� 1

� �
fwð26Þ

�
are model functions. The model function fw(n) is

the wall-reflection function (Nagano and Hattori, 2002)
as follows:

fwðnÞ ¼ exp � Rtm

n

� �2
" #

ð18Þ

where the modified Reynolds number Rtm in the model
function fw(n) is introduced as follows:

Rtm ¼
Ctmn�R1=4

t

CtmR1=4
t þ n�

ð19Þ

where Ctm is model constant set at 1.3 · 102.

3.2. Evaluation of derived NLEDHM

Evaluations of the derivative expression (NLHNB
model) in Eq. (14) are conducted using DNS databases
under wall-bounded, buoyancy-affected turbulent flow in
a heated plane channel with unstable or stable stratification
as indicated in Fig. 1(a) (Iida and Kasagi, 1997;
Gr = 1.3 · 106 where DH = HH � HC and Res = 150
(unstable case); Iida et al., 2002; Gr = 4.4 · 106 and
Res = 150 (stable case)) and in a vertical heated plane
channel shown as Fig. 1(b) (Kasagi and Nishimura, 1997;
Gr = 9.6 · 105 and Res = 150). In the case of a vertical
plane channel, the streamwise turbulent heat-flux, uh,
appears clearly in both the transport equations of turbu-
lence energy and its dissipation rate. Also, the turbulent
heat-flux is included in the modeled expression of Reynolds
stress for the buoyancy-affected flow as described later.
Therefore, the streamwise turbulent heat-flux should also
be predicted exactly by the model. Fig. 2 shows the results
of assessments for the NLHNB model of the streamwise
turbulent heat-flux in the vertical heated plane channel
flow. It can be seen that the NLHNB model underpredicts
streamwise turbulent heat-flux. Also, in cases of heated
plane channel with unstable or stable stratification, obvi-
ously, underpredictions of turbulent heat-flux are observed
as shown in Fig. 3. On the other hand, the wall-normal tur-
bulent heat-flux predicted by the NLHNB model is shown
in Figs. 4 and 5. It is clear that the wall-normal turbulent
heat-flux is not reproduced accurately in these cases. Con-
sequently, we improve the modeled expression of turbulent
heat-flux to predict wall-bounded buoyancy-affected turbu-
lent flows.

3.3. Evaluation of existing NLEDM

In the velocity field, since the NLEDM reflecting buoy-
ancy effect was derived by So et al. (2002) in two-dimen-



Fig. 3. Evaluation result for modeled streamwise turbulent heat-flux
(stable/unstable heated plane channel flows).

Fig. 4. Evaluation result for modeled wall-normal turbulent heat-flux
(vertical heated plane channel flow).

Fig. 5. Evaluation result for modeled wall-normal turbulent heat-flux
(stable/unstable heated plane channel flows).

Fig. 6. Evaluation result for modeled Reynolds shear stress (vertical
heated plane channel flow).
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sional buoyant flows (hereinafter referred to as the SVJZG-
O model), we evaluate whether or not NLEDM is applica-
ble in wall-bounded buoyancy-affected turbulent flows.
The SVJZG-O model is given as follows:

b� ¼ Qð1ÞS� þ Qð2ÞðS�X� �X�S�Þ

þ Qð3Þ S�2 � 1

3
fS�2gI

� �
þ Qð4Þf� þ Qð5Þðf�X� �X�f�Þ

ð20Þ

where b� ¼ b�ij ¼
C3�2

C2�4
3

� �
bij, S� ¼ S�ij ¼ 1

2
gsð2� C3ÞSij, X� ¼

X�ij ¼ 1
2
gsð2� C4ÞXij and f� ¼ f �ij ¼ Gij=Gk � dð2dÞ

ij are the
nondimensional tensors, respectively, I = dij is the identity
tensor, Gij ¼ bðgjuihþ giujhÞ is the buoyant term in the
transport equation of Reynolds stress, and dð2dÞ

ij is the
two-dimensional tensor first proposed by Pope (1975).
Model coefficients Q(1)–Q(5) in Eq. (20) are given as
follows:

Qð1Þ ¼ 1

D1

1� 1

3D2

ðff�S�gþ2fX�S�f�gÞG� �G�

3

� �
; Qð2Þ ¼Qð1Þ

ð21Þ

Qð3Þ ¼�2
1

D1

Qð1Þ � 1

D2fS�2g
ðff�S�gþ2fX�S�f�gÞG� þ 1

fS�2g
G�

ð22Þ

Qð4Þ ¼ 1

2D2

G�; Qð5Þ ¼ 1

2D2

G� ð23Þ

D1 ¼� 1�2

3
fS�2g�2fX�2g

� �
; D2 ¼�ð1�2fX�2gÞ ð24Þ

G� ¼ s
ðC5�1ÞðC3�2Þ

2ðC2� 4
3
Þk Gk; g¼ 1

2
C1þ

P k

e
þGk

e
�1

� ��1

; s¼ k
e

ð25Þ

where C1 = 3.4, C2 = 0.36, C3 = 1.25, C4 = 0.4 and C5 =
0.3 are model constants.

The SVJZG-O model is assessed to be identical with
cases for thermal field using DNS databases. Fig. 6 shows
a result of evaluation in the vertical heated plane channel
flow. Note that the dashed line indicates the result of the
SVJZG-O model and the solid line shows the modified
model (SVJZG-M model). Since Eq. (24) often gives a neg-
ative value in parentheses at large {X*2}, the model over-
predicts remarkably near the wall as shown in Fig. 6.
Thus, to avoid the overprediction, the functions are modi-
fied as D1 ¼ � 1� 2

3
S� þ 2fX�2g

� �
and D2 = �(1 + 2{X*2}).

The SVJZG-M model is also evaluated in an unstable
heated plane channel flow as shown in Fig. 7. In this case,
the model obviously gives an overprediction near the wall.
From these evaluations, the predictions are improved in
most parts of the channel, but the near-wall behavior of
model prediction should be carefully corrected.



Fig. 7. Evaluation result for modeled Reynolds shear stress (unstable
heated plane channel flow).
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4. Newly proposed NLEDHM and NLEDM

4.1. Modification of NLEDHM

So far, the modeling for the dissipation term, ejh, in the
transportation of turbulent heat-flux has been omitted,
because the dissipation does not influence the prediction
of wall-normal heat-flux in the wall-bounded flow. How-
ever, the dissipation affects predicting the streamwise
heat-flux in the wall-bounded flow. Therefore, we intro-
duce the effect of the dissipation-rate into the modeling
for Uij and ejh as follows:

Ujh � ejh ¼ �Ct1
ujh
su
þ Ct2ukh

oUj

oxk
þ Ct3ukh

oU k

oxj

þ Ct5gibkh � Ct4uiujAik
oH
oxk
� Ct6Ajkgkbkh ð26Þ

where Aikð¼ uiuk=kÞ is the nondimensional Reynolds stress
tensor. The oH=oxk-related term is included, because the
production of ejh is strongly affected by the temperature
gradient. Note that the adopted buoyant term is proposed
by Craft et al. (1996). Thus, substituting Eq. (26) into Eq.
(11), we can obtain the following equation:

Da�j
Dt
¼ 1ffiffiffi

k
p ffiffiffiffiffi

kh

p
1

Ch1su
�ujh� Ch1suujuk

oH
oxk
� Ch2suukhSjk

�

� Ch3suukhXjk � Ch4suuiujAik
oH
oxk
� Ch5sugjbkh

� Ch6suAjkgkbkh

�
� 1

2

ujhffiffiffi
k
p ffiffiffiffiffi

kh

p
e
k

P k

e
þ Gk

e
� 1

� ��

þ eh

kh

P kh

eh
� 1

� ��
ð27Þ

where Ch1 = 1/Ct1, Ch2 = (1 � Ct2 � Ct3)/Ct1, Ch3 = (1 �
Ct2 + Ct3)/Ct1, Ch4 = Ct4/Ct1, Ch5 = (2 � Ct5)/Ct1 and Ch6 =
Ct6/Ct1 are model constants. Also, under the local equilib-
rium state, Da�j=Dt ¼ 0, the following relation is derived:
ujhffiffiffi
k
p ffiffiffiffiffi

kh

p
1

su
1þ Ch1

2

P k

e
þ Gk

e
� 1

� �
þ Ch1

2R
P kh

eh
� 1

� �� �

¼ �ðdjk þ 3bjkÞ
2

3

Ch1kffiffiffi
k
p ffiffiffiffiffi

kh

p
oH
oxk
� ðCh2Sjk þ Ch3XjkÞ

ukhffiffiffi
k
p ffiffiffiffiffi

kh

p

� ðdij þ 3bijÞ
2

3

kCh4ffiffiffi
k
p ffiffiffiffiffi

kh

p Aik
oH
oxk
� Ch5ffiffiffi

k
p ffiffiffiffiffi

kh

p gjbkh

� Ch6ffiffiffi
k
p ffiffiffiffiffi

kh

p Ajkgkbkh ð28Þ

Here, instead of the characteristic time-scale of the left-
hand side of Eq. (28), the mixed time-scale sm is introduced
for considering the wall effect.

su

1þ Ch1

2
P k
e þ

Gk
e � 1

� �
þ Ch1

2R
P kh
eh
� 1

� �! sm ð29Þ

In this study, the mixed time-scale is modeled as follows
(Nagano and Shimada, 1996):

sm ¼
2R

2Rþ Cm
þ

ffiffiffiffiffiffi
2R
Pr

r
bk1

R3=4
t

exp �Rtm

bk2

� �3=4
" #( )

su ð30Þ

In order to derive the NLEDHM, the following nondi-
mensional quantities are introduced:

b�jk ¼ 3bjk ; H�k ¼
2

3

Ch1ksmffiffiffi
k
p ffiffiffiffiffi

kh

p
oH
oxk

;

S�jk ¼Ch2smSjk; X�jk ¼Ch3smXjk;

T �k ¼
2

3

Ch4ksmffiffiffi
k
p ffiffiffiffiffi

kh

p
oH
oxk

; G�j ¼
2

3

Ch5smffiffiffi
k
p ffiffiffiffiffi

kh

p gjbkh;

F �k ¼
2

3

Ch6smffiffiffi
k
p ffiffiffiffiffi

kh

p gkbkh

ð31Þ

Using Eqs. (31), Eq. 30 is transformed into the following
simple form:

a�j ¼ �ðdjk þ b�jkÞH�k � a�kðS�jk þ X�jkÞ � ðdij þ b�ijÞAikT �k

� G�j � AjkF �k ð32Þ

Finally, the following explicit form regarding a�j can be
obtained from Eq. (32):

a�j ¼
1

1þ 1
2
ðX�2�S�2Þ

f½�ðdjkþb�jkÞþðd‘kþb�‘kÞðS�j‘þX�j‘Þ�H�k

þ½�ðdjkþb�jkÞAikþðd‘iþb�‘iÞðS�j‘þX�j‘ÞAik�T �k
�½djk�ðS�jkþXjkÞ�G�k�½dj‘�ðS�j‘þXj‘Þ�A‘kF �kg ð33Þ

where X�2 ¼ X�ijX
�
ij and S�2 ¼ S�ijS

�
ij.

Eq. (33) can be rewritten in the dimensional form as
follows:

ujh¼�at
jk

oH
oxk
þ s2

m

fRT

ðCh1u‘ukþCh5u‘uiAikÞðCh2Sj‘þCh3Xj‘Þ
oH
oxk

�2Ch6smgkbkh

fRT

½djk� smðCh2SjkþCh3XjkÞ�

�2Ch7smA‘kgkbkh

fRT

½dj‘� smðCh2Sj‘þCh3Xj‘Þ� ð34Þ

where the anisotropic eddy diffusivity for heat is given as



Table 1
Model constants and functions of proposed NLEDHM

Ctm Rtm fw(n) Ch1 Ch2 Ch3 Ch4

1.3 · 102 Ctmn�R1=4
t

CtmR1=4
t þ n�

Eq. (18) 0.14[1 � fw(40)] 0.05 0.11 0.3

Ch5 Ch6 Ch7 Cm Bk1 su sh
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k
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þ
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at
jk ¼

sm

fRT

ðCh1ujuk þ Ch4uiujAikÞ ð35Þ

fRT ¼ 1þ 1

2
fsm½1� fwð40Þ�g2ðCh3X

2 � Ch2S2Þ ð36Þ

where model constants and functions in Eq. (34) are indi-
cated in Table 1.

To model the transport equation for thermal field, the
turbulent diffusion terms in Eqs. (8) and (9) are modeled
by GGDH modeling (Nagano and Hattori, 2003):

T kh ¼
o

oxj
Chfh1

k
e

fRuju‘
okh

ox‘

� �
ð37Þ

T eh ¼
o

oxj
C/fh2

k
e

fRuju‘
oeh

ox‘

� �
ð38Þ

Also, model constants and functions in Eqs. (8) and (9)
are indicated in Table 2.

4.2. Modification of NLEDM

The transport equation of Reynolds stress with the
buoyant term is given as follows:

Duiuj

Dt
¼ Dij þ T ij þ P ij þ Gij þ Uij � eij ð39Þ

where Dij is a molecular diffusion term, Tij is a turbulent
and pressure diffusion term, P ij ¼ �uiukðoUj=oxkÞ�
ujukðoU i=oxkÞ is a production term, Gij ¼ �bðgjuihþ
giujhÞ is a buoyant term, Uij is a pressure–strain correlation
term and eij is a dissipation term, respectively.
Table 2
Model constants and functions of transport equations for kh and eh

CP1 CP2 CP3 Ce2 fP1

0.85 (R + 0.4/Pr1/4) 0.64 1.2 1.9 1 � f

CD2fD2 C�D2f �D2

C�D2f �D2 1þ C�D3f �D3

ffiffiffiffiffi
Rt

p
1þ Cs

ffiffiffiffiffi
Pr
R

r !" #
ðCe2fe2 � 1Þ 1� exp �

�"(

fe2 C�D3 f �D3 Cs

1� 0:3 exp � Rt

6:5

� �2
" #

0.025 fw(30) 3.0

Ch C/ fR

0.20 0.25 2R/(R + 0.5)
Introducing the Reynolds stress anisotropy tensor
bij ¼ uiuj=2k � dij=3 and neglecting the diffusive effect, the
following relation is derived with Eqs. (6) and (39):

Dbij

Dt
¼ 1

2k
ðP ij þ Gij þ Uij � eijÞ �

bij þ dij=3

k
ðP k þ Gk � eÞ

ð40Þ
In the local equilibrium state, since the relation Dbij/

Dt = 0 holds, Eq. (40) yields the following relation:

ðP ij þ Gij þ Uij � eijÞ ¼ 2 bij þ
dij

3

� �
ðP k þ Gk � eÞ ð41Þ

Using the form eij ¼ 2
3
edijþDeij of the dissipation term

(Gatski and Speziale, 1993) for Eq. (41), we can obtain

ðP k þGk � eÞbij ¼ �
2

3
kSij � k bikSjk þ bjkSik �

2

3
bmnSmndij

� �

� kðbikXjk þ bjkXikÞ þ
1

2
Pij

þ 1

2
Gij �

2

3
dijGk

� �
ð42Þ

where Pij = Uij � Deij, and the modeled Pij is employed as
the following general linear model with the buoyant term.

Pij ¼ �C1ebij þ C2kSij

þ C3k bikSjk þ bjkSik �
2

3
bmnSmndij

� �

þ C4kðbikXjk þ bjkXikÞ � C5 Gij �
2

3
dijGk

� �
ð43Þ

where C1–C5 are model constants.
fP2 fP3 CD1 fD1

w(1) 1.0 1.0 1 � fw(4) 1.0

Cet
Rtm

5

�2
#)

Cet fh1 fh2

1 + Pr1.5 1 + 5fw(5) 1 + 20fw(10)
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Substituting Eq. (43) into (41) and introducing nondi-
mensional quantities, we can obtain the following relation:

b�ij ¼ �S�ij � b�ikS�jk þ b�jkS�ik �
2

3
b�k‘S

�
k‘dij

� �
þ b�ikX

�
kj þ b�jkX

�
ki � fij ð44Þ

where

S�ij ¼ 1
2
gsð2� C3ÞSij; X�ij ¼ 1

2
gsð2� C4ÞXij;

b�ij ¼
C3�2

C2�4
3

� �
bij; s ¼ k

e

f �ij ¼ gs ðC5�1ÞðC3�2Þ
2 C2�4

3ð Þk Gij � 2
3
Gkdij

� �
;

g ¼ 1
2
C1 þ P k

e þ
Gk
e � 1

� ��1

9>>>>>>>>=
>>>>>>>>;

ð45Þ

Eq. (45) can be written in the matrix form as

b� ¼ �S� � b�S� þ S�b� � 2

3
fb�S�gI

� �
þ b�X� �X�b� � f�

ð46Þ
In order to derive an explicit form of b* from Eq. (46),

the integrity basis, b� ¼
P

kQðkÞTðkÞ first proposed by Pope
(1975), is used with the following seven basis tensors (So
et al., 2002):

Tð1Þ ¼ S�; Tð5Þ ¼ f�X� �X�f�

Tð2Þ ¼ S�X� �X�S�; Tð6Þ ¼ f�2 � 1
3
ff�2gI

Tð3Þ ¼ S�2 � 1
3
fS�2gI; Tð7Þ ¼ f�S� þ S�f� � 2

3
ff�S�gI

Tð4Þ ¼ f�

9>>>>=
>>>>;
ð47Þ

Substituting Eq. (47) into b� ¼
P

kQðkÞTðkÞ gives

b� ¼ Qð1ÞS� þQð2ÞðS�X� �X�S�Þ

þQð3Þ S�2 � 1

3
fS�2gI

� �
þQð4Þf� þQð5Þðf�X� �X�f�Þ

þQð6Þ f�2� 1

3
ff�2gI

� �
þQð7Þ f�S� þS�f� � 2

3
ff�S�gI

� �
ð48Þ

On the other hand, substituting the scalar functions H

and J related with Tk indicated by Pope (1975),
T(k)S* + S*T(k) � 2

3
fTðkÞS�gI ¼

P
cH kcT

ðcÞ and TðkÞX��
X�T ðkÞ ¼

P
cJ kcT

ðcÞ and the integrity basis into Eq. (46)
give the following equation for T(k):

X
k
QðkÞTðkÞ ¼ �

X
k

d1kTð1Þ �
X

k

QðkÞ
X

k

H kcT
ðkÞ

 !" #

þ
X
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QðkÞ
X
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J kcT
ðkÞ

 !
�
X

k

d4kTð4Þ ð49Þ

Eq. (49) can be written as QðkÞ ¼ A�1
ck Bk, where Ack =

�dkc � Hkc + Jkc, and Bk = d1k + d4k. By using Cayley–
Hamilton identities, the matrices Hkc and Jkc can be deter-
mined. Thus, we can obtain Q(k) using Mathematica as
follows:
Qð1Þ ¼ 1
D1
; Qð2Þ ¼ 1

D1
; Qð3Þ ¼ � 2

D1
; Qð4Þ ¼ 1

D2

Qð5Þ ¼ 1
D2
; Qð6Þ ¼ 0; Qð7Þ ¼ 1

D2

)
ð50Þ

where

D1 ¼ � 1� 2

3
g1 � 2g2

� �
; D2 ¼ �ð1� 2g2Þ ð51Þ

with g1 ¼ ðS�ijS�ijÞ
1=2 and g2 ¼ ðX�ijX�ijÞ

1=2.
Therefore, we can obtain the expression of Reynolds

shear stress with buoyant effect for NLEDM as follows:

b�ij ¼ �
3

3� 2g2 þ 6f2

�
S�ij þ ðS�ikX�kj � X�ikS�kjÞ

� 2 S�ikS�kj �
1

3
S�mnS�nmdij
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� 1
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� ��
ð52Þ

where g ¼ g1 ¼ ðS�ijS�ijÞ
1=2, f ¼ g2 ¼ ðX�ijX�ijÞ

1=2 and fij =
Gij � (2/3)Gkdij. Note that in order to avoid an inappropri-
ate value of D1 and D2 referring to the assessment results,
D1 and D2 in Eq. (51) are modeled as D1 = (3 � 2g2 + 6f2)/
3 and D2 = 1 + 2f2, respectively. Here, the nondimensional
forms of b�ij, S�ij, X�ij and f �ij are adopted as follows (Abe
et al., 1997; Nagano et al., 1997):

b�ij ¼ CDbij; S�ij ¼ CDsSij;

X�ij ¼ 72CDsXij; f �ij ¼ Cgðsmg=kÞfij ð53Þ

Consequently, the newly proposed expressions are as
follows:

uiuj ¼
2

3
kdij �

2mt

fR1

Sij �
4CDkf s

fR1

ðSikXkj � XikSkjÞ

þ 4CDkf s
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fR2
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fikSkj þ Sikfkj �
2

3
fmnSmndij

� �
ð54Þ

fR1 ¼1þ 22

3
ðCDsR0

Þ2X2 þ 2

3
ðCDsR0

Þ2ðX2 � S2ÞfB ð55Þ

fR2 ¼1þ 8ðCDsR0
Þ2X2 ð56Þ

where smg is the mixed scale of velocity and thermal fields,
and fs is the function of characteristic time-scale reflecting
wall-limiting behavior (Nagano and Hattori, 2003) as
follows:

fs ¼ s2
R0
þ s2

Rw
ð57Þ

where the characteristic time-scale sR0
is given by mt/k, and

sRw is the wall-reflection time-scale. The other model con-
stants and functions in Eq. (54) are indicated in Table 3.



Table 3
Model constants and functions of proposed NLEDM
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Table 4
Model constants and functions of transport equations for k and e

Ce1 Ce2 Ce3 Cs Ce

1.45 1.9 1.2 1.4 1.8
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Fig. 9. Distributions of Reynolds shear stress in vertical heated plane
channel flow.
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To model the transport equation for the velocity field,
the turbulent diffusion terms in Eqs. (6) and (7) are mod-
eled by GGDH modeling (Nagano and Hattori, 2003):

T k ¼
o

oxj
Csft1

mt

k
uju‘

ok
ox‘

� �
ð58Þ

T e ¼
o

oxj
Ceft2

mt

k
uju‘

oe
ox‘

� �
ð59Þ

Also, the model constants and functions in Eqs. (6) and
(7) are indicated in Table 4.
Fig. 8. Distributions of mean velocity in vertical heated plane channel
flow.
5. Results and discussion

The evaluations for the newly improved models are
shown in Figs. 8–15. The predictions of the conventional
Fig. 10. Distributions of mean temperature in vertical heated plane
channel flow.



Fig. 12. Distributions of wall-normal heat-flux in vertical heated plane
channel flow.

Fig. 13. Distributions of mean temperature in unstable heated plane
channel flow.

Fig. 14. Distributions of streamwise heat-flux in unstable heated plane
channel flow.

Fig. 11. Distributions of streamwise heat-flux in vertical heated plane
channel flow.
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eddy viscosity model reflecting the buoyant effect (Yin
et al., 1991; YNT model, Murakami et al., 1996; MKCO
model) and a constant turbulent Prandtl number (Prt =
0.9) model are also included in these figures for compari-
son. The numerical technique used is a finite-volume
method (Hattori and Nagano, 1995; Nagano and Hattori,
2003).

In the case of a vertical heated plane channel flow shown
as Figs. 8–12, it can be seen that almost all models accu-
Fig. 15. Distributions of mean temperature in stable heated plane channel
flow.

Fig. 16. Distributions of wall-normal turbulent heat-flux in stable heated
plane channel flow.
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rately predict Reynolds shear stress, mean temperature and
turbulent heat-fluxes. In this case, since the streamwise tur-
bulent heat-flux, uh, appears explicitly in the transport
equations with the buoyant term, Gk, the adequate predic-
tion of uh should be required. Only the present model gives
an adequate prediction of the streamwise turbulent heat-
flux as shown in Fig. 11. Thus, the present models can
accurately predict this flow.
Fig. 17. Distributions of streamwise turbulent heat-flux in stable heated
plane channel flow.

Fig. 18. Distributions of Reynolds shear stress in stable heated plane
channel flow.

Fig. 19. Distributions of Reynolds normal stress in stable heated plane
channel flow.
The proposed model can accurately predict the cases of
unstable heated plane channel flows as indicated in Figs. 13
and 14. In this case, since the turbulence energy is also
Fig. 20. Two-dimensional enclosed space with supply and exhaust.

Fig. 21. Predicted profiles of mean velocity, U (x/H = 0.5).
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underpredicted due to the overprediction of e near the wall,
the streamwise Reynolds normal stress, u2, gives an under-
prediction compared with the DNS result (figure not
shown here). Thus, the streamwise turbulent heat-flux is
slightly underpredicted by the proposed model, but the
others cannot predict as shown in Fig. 14.

Next, the proposed model is evaluated in the case of sta-
ble heated plane channel flows as shown in Figs. 15–19. In
this case, even the linear turbulence models reflecting the
Fig. 22. Predicted profiles of mean temperature at the horizontal center
cross-section (x/H = 0.5).

Fig. 23. Predicted profiles of mean velocity, V , (y/H = 0.5).

Fig. 24. Predicted profiles of mean velocity at the vertical center cross-
section (y/H = 0.5).
buoyancy effect except for the Prt = constant model give
reasonable predictions except for the streamwise turbulent
heat-flux. However, the predicted turbulent quantities of
the proposed model give better predictions of other models’
agreement with DNS results in various Grashhof number
flows.

Thus, it is concluded that the present model is available
for accurate prediction of wall-shear flows with buoyancy.
Note that Reynolds shear stress and the anisotropy of tur-
bulent intensities near the wall are appropriately obtained
by the proposed model as indicated in Figs. 18 and 19.

Finally, in order to confirm the model performance, a
cavity flow with stable stratification (Blay et al., 1992) is
predicted using the proposed model. The flow conditions
are shown in Fig. 20, and Archimedes number Ar = 0.034
and Reynolds number Re = 722 are set. The results of pre-
dictions are shown in Figs. 21–24. The AKN model apply-
ing buoyant flow calculation which is the linear two-
equation heat transfer model is included for comparison.
Obviously, the predictions of proposed model indicate
good agreement with experimental data.

6. Conclusions

DNS-based evaluations of the modeled expressions for
Reynolds stress and turbulent heat-flux for NLEDM and
NLEDHM are conducted in wall-shear flows with buoy-
ancy. In particular, it is found that the streamwise turbu-
lent heat-flux, uh, is underpredicted in all cases. In the
case of a vertical plane channel, the streamwise turbulent
heat-flux, uh, appears clearly in the transport equations
for turbulence energy, its dissipation rate and dissipation
rate of temperature variance. Also, the turbulent heat-flux
is included in the modeled expression of Reynolds stress for
the buoyancy-affected flow. Therefore, the streamwise tur-
bulent heat-flux should also be exactly predicted by the
model. Thus, we have proposed here a new nonlinear
two-equation turbulence models which can satisfactorily
predict wall-shear flows with buoyancy.
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